Optimizing Enzyme Expression and Performance with Zymtronix

Optimizing enzymes for Zymtronix’s cell-free manufacturing platform

Today we are pleased to announce our partnership with Zymtronix, a developer of cell-free process technologies. Together we aim to optimize enzymes used in Zymtronix’s proprietary cell-free platform for the production of important ingredients in food, agriculture, cosmetics and pharmaceuticals.

Enzymatic biocatalysis is a powerful manufacturing technology that can enable the production of a wide range of chemicals and molecules. Zymtronix’s cell-free platform is designed to solve challenges associated with traditional biocatalysis and seeks to enable the production of a wide range of products with precision and productivity. By partnering with us to build and produce bioengineered market-ready enzymes, Zymtronix anticipates being able to extend its solutions into the pharma, nutrition, agriculture markets, among others.

Zymtronix aims to leverage Ginkgo Enzyme Services to discover, optimize, and produce enzymes

Ginkgo Enzyme Services offers partners end-to-end support for the discovery, optimization, and production of enzymes for diverse applications. Through the partnership, we will leverage our suite of enzyme services to engineer enzymes for Zymtronix’s applications using metagenomic enzyme discovery as well as improve enzyme expression and production host performance.

We’re thrilled to welcome Zymtronix to the platform and support their applications in sustainable ingredients and beyond. We’ve built out our platform to serve a wide variety of enzyme discovery, engineering, optimization and scale up efforts, and we’re so excited for the work to come in this partnership. Zymtronix’s cell-free biomanufacturing platform is pioneering solutions for various industries, and we’re eager to leverage our end-to-end capabilities and help expand its efforts in transforming the way enzymes are used.

“This partnership will greatly accelerate our work of bringing the precision and scalability of cell-free biomanufacturing and sustainable ingredients to market starting with alternatives to animal sources; Ginkgo is uniquely able to support us with both enzyme engineering and strain expression, helping us continue to accelerate commercialization,” said Stéphane Corgié, CEO-CTO and founder, Zymtronix. “We hope to extend this partnership in the future to facilitate the production of multiple end-market products.”

To learn more about Ginkgo Enzyme Services, please visit ginkgobioworks.com/enzyme-services/.

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?

Tracking Pathogen Variants with Rwanda Biomedical Centre

Monitoring for COVID-19 variants at Kigali International Airport

We’re excited to announce that we’re partnering with the Rwanda Biomedical Centre (RBC) on a one-year pathogen monitoring program at Rwanda’s Kigali International Airport (KGL) to identify new and emerging viral variants.

Adding a new node to our pathogen monitoring network

Concentric by Ginkgo and RBC will collaborate to detect the virus on arriving international flights. We’ll sample aircraft wastewater and collect nasal swabs from travelers on a voluntary, anonymous basis. Our aim is to provide critical early warning public health insights to help inform strategies in Rwanda and beyond.

Ginkgo and RBC will work together to establish KGL as a new node in a global network of pathogen monitoring infrastructure, complementing the insights generated from Concentric’s existing travel biosecurity programs at several major international airports in the U.S. The program builds on Ginkgo’s previously announced MOU to develop and implement biosecurity capabilities in Rwanda.

A public health radar to inform targeted response strategies

Mitigating the risk of biological threats, including emerging viral variants, remains a global imperative that necessitates a robust early warning system. This pathogen monitoring program at Kigali International Airport will act like a public health radar, providing leaders with near-real-time data to inform targeted response strategies. We are excited to be partnering with the Rwanda Biomedical Centre—to stay ahead of the next variant or pathogen of concern, we must take an international approach to biosecurity.

RBC is Rwanda’s national health implementation agency, established in 2011 to improve the health of the Rwandan population by providing high quality, affordable and sustainable health care services. Ginkgo will support the end-to-end collection and analysis workflow with materials, training and logistical support, digital platform and data reporting, as well as bioinformatics and decision support services; RBC will contribute on-the-ground operational support for sample collection, testing, and sequencing.

Prof. Claude Muvunyi, the Director General of the Rwanda Biomedical Centre said, “As we continue to feel the impacts of emerging variants and pathogens, we recognize the need to create a sustainable public health and biosecurity infrastructure in Rwanda and internationally. We are thrilled to launch this program at Kigali International Airport in partnership with Ginkgo to enhance our biosecurity capabilities.”

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?

Biobased Alternatives to Synthetic Polymers with Bioweg

Developing cost-effective biobased materials as clean alternatives to synthetic polymers

Today, we’re announcing a new collaboration with Bioweg, a producer of highly functional and customizable biobased materials. Our partnership aims to optimize the production of bacterial cellulose and to produce novel variants of cellulose with improved performance to serve a variety of end markets.

Bioweg’s products are made of biodegradable bacterial cellulose and have already been tested and implemented by companies as an effective substitute for widely used synthetic polymers such as acrylates, polyethylene, and polystyrene. Synthetic polymers often appear as microbeads (i.e., micropowders) and texturants (i.e., Rheology modifiers) in products throughout cosmetics, homecare, personal care, agricultural coatings, and other industries, which contribute to microplastic pollution in waters worldwide. It is estimated that an average person could be ingesting about 5 grams of plastic each week (PDF) through the consumption of common foods and beverages. These microplastics are non-biodegradable and may carry toxic chemicals. Regulatory agencies and communities around the world are starting to regulate microplastics contamination. Just last year, the European Chemical Agency announced phasing out microbeads in ‘rinse-off’ and ‘leave-on’ cosmetics.

Leveraging our strain engineering and screening capabilities to deliver biobased solutions at scale

“Consumers and companies are united in their commitment to finding better performing and more sustainable alternatives for everyday products to break the chain of microplastic pollution. Our solutions are not just tackling a major environmental, sustainability and health problem, but also present a robust market opportunity to replace plastic polymers in care, coatings, chemicals, and other industries,” said Prateek Mahalwar, CEO at Bioweg. “We believe Ginkgo’s strain engineering and screening capabilities can enable us to deliver our biobased solutions at scale and competitive pricing.”

Bioweg is addressing a significant need in the marketplace to develop and produce a new generation of clean alternatives to synthetic polymers. We are committed to supporting the shift to sustainable and biobased high-performance alternatives and are thrilled to be working with Bioweg to address the pressing issues of microplastics contamination and promote responsible consumption.

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?

Better Baby Formula with NAMUH

Ginkgo will develop and optimize strains to produce functional oligosaccharides for NAMUH’s infant nutrition products

Today, we are pleased to announce a multi-product collaboration with NAMUH, an infant nutrition company, to develop functional oligosaccharides that are structurally identical to those found in human breast milk.

NAMUH’s mission is to create complete infant formula products substantially comparable to human breast milk, down to the molecular level. Human Milk Oligosaccharides (HMOs) are essential fiber-like nutrients unique to human milk that provide an important energy source to beneficial gut bacteria in infants. Despite being the third most abundant component in human milk, HMOs are currently a small component in infant formulas, if present at all.

Producing HMOs through yeast fermentation

Currently, NAMUH’s proprietary technology provides for a cost-effective source of a family of HMOs via yeast fermentation. NAMUH will leverage Ginkgo’s expertise in yeast strain engineering and fermentation process development through this partnership. Our aim is to enable the production of various HMOs through yeast fermentation and to unlock the possibility of making infant formula nutritionally robust and much closer to human breast milk.

NAMUH plans to leverage Ginkgo’s platform to develop and optimize strains

“Consumer demand for high quality, safe, infant nutrition products is growing, and NAMUH is thrilled to partner with Ginkgo to accelerate our market entry into this rapidly evolving category,” said Dr. Chaeyoung Shin, founder and CEO at NAMUH. “We believe engineering biology is the perfect way to produce crucial nutrients for babies, and together with Ginkgo, we are excited to play a key role in improving how future generations are fed.”

We seek out partners like NAMUH that are using biology to create category-leading products in legacy industries. Countless families around the world rely on infant formula every day, and we are thrilled to be working with NAMUH as they aim to create a healthier, safer formula that parents can depend on.

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?

Engineering Bacteria for Cancer Patient Treatment with Prokarium

Partnership with Prokarium to discover multiple targets for RNA therapeutics and immuno-oncology

Today, we’re announcing a new partnership with Prokarium – a biopharmaceutical company pioneering the oncology field of microbial immunotherapy – to develop a bactofection platform to deliver RNA-based therapeutics.

Most gene therapies today use viral delivery systems, which may have limited utility due to toxicity and targeting issues. Bactofection, the process of transferring genetic material into a mammalian cell via a bacterium, is an alternative gene delivery system that could deliver therapeutic agents to a patient. In bactofection, the naturally occurring tumor-colonizing characteristics of bacterial species, such as Salmonella, can be modified via genetic manipulation and harnessed to be a targeted delivery vehicle for various therapeutic payloads.

Developing bactofection platform to treat cancer patients

In collaboration with Prokarium, Ginkgo will set out to engineer a Salmonella-based bactofection platform for the delivery of RNA payloads to treat cancer patients, building on existing capabilities in RNA therapeutics, viral-based gene therapy and bacterial therapeutics.

“By leveraging Ginkgo’s microbial and mammalian foundry capabilities, we are building a highly versatile and innovative bactofection platform to support delivery of novel modalities from the ground up,” said Kristen Albright, CEO at Prokarium. “Through this partnership, we are working to unlock a new generation of immuno-oncology therapeutics.”

Advancements in immunotherapy such as checkpoint inhibitors and CAR-T have transformed the treatment of certain cancers, with tremendous progress across novel modalities continuing to build. With Prokarium, we will work to develop a bactofection platform that leverages the convergence of these advancements in immuno-oncology, gene therapy, RNA therapeutics and bacterial therapeutics. We are  excited to bolster our work with leading companies like Prokarium, which can utilize our services to innovate and expand what is possible with novel therapeutics.

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?

The Enzyme Intelligence Virtual Event

Enzymes are having a moment

These days, there’s a lot going on in the enzyme space. Machine learning (ML) is changing the way we think about the previously hard problems of modeling protein structures and predicting protein functions. Enzyme-driven industries like pharmaceutical manufacturing, diagnostics, and industrial green chemistry are looking forward to new and better enzymes made possible by ML.

At Ginkgo, we love technologies that make biology easier to engineer. We’ve built an ML-guided enzyme engineering stack that draws on our Foundry’s established strengths in assembling smart DNA libraries, engineering organisms, and screening in (ultra) high throughput. The result is the new Ginkgo Enzyme Services offering that enables our customers to discover new enzymes and optimize existing ones. We’re super excited to share the results being delivered.

So let’s take a moment to talk about enzymes

On December 15th, Ginkgo hosted the Enzyme Intelligence Virtual Event. Dr. Emily Wrenbeck, Head of Protein Engineering, presented to an audience of more than 450 about how Ginkgo’s Foundry combines ML with massive experimental datasets to enable enzyme engineering.

The presentation was structured around 4 case studies:

  • Enzyme Discovery. An ML-guided search of a large metagenomic library led Ginkgo to an unexpected corner of sequence space, producing dozens of candidate enzymes and opening up IP options for the customer.
  • Better Activity. A customer’s project-critical enzyme had a reputation for being recalcitrant to engineering. Iterative protein design cycles produced a 10-fold improvement in activity over wild type as measured by kcat/KM.
  • Better Specificity. A naturally sourced enzyme made 4 undesired byproducts, with the desired product only 10% of the total. Ginkgo tested over 10,000 variants with ultra high throughput GC-MS to bring the product specificity to over 75%
  • Better Biocatalysts. A customer’s enzyme suffered from a low S:H (synthesis:hydrolysis) ratio. In a single round of engineering, Ginkgo was able to improve both enzyme speed and specificity under industrially relevant process conditions.

A recurring theme in the event was the value added by integrating ML tools with the broader capabilities of Ginkgo’s foundry. An engineering cycle that brings together DNA assembly, assay development, high-throughput screening, computational tools, and human experts is required to consistently deliver improved enzyme performance.

Far from replacing data, ML makes data more valuable. The massive biological datasets Ginkgo can generate were key to the success of these enzyme engineering programs.

It’s time for end-to-end Enzyme Services

Following the technical presentation, Ginkgo’s Business Development team took the stage to answer questions about Ginkgo’s latest offering. Building on powerful ML-guided enzyme engineering capabilities, Gingko Enzyme Services offers end-to-end solutions for R&D leaders looking for better enzymes.

  • Novel Enzyme Discovery. Ginkgo’s large in-house metagenomic libraries are combined with ultra high throughput screening to identify new enzymes with a desired activity. These enzymes are often unrelated to previously described candidates, opening up new IP options for customers.
  • Function & Stability Optimization. ML-guided protein design is combined with a range of sequence-based, structure-based, and classical enzymology tools to improve a candidate enzyme’s activity, stability, specificity or expression level.
  • Robust Host Strains. Ginkgo customers have access to proprietary bacterial and fungal host strains optimized for protein production, including methanol-free Pichia pastoris and low viscosity Aspergillus niger.
  • Fermentation Process Development. When it comes to commercial-scale enzyme production, Ginkgo offers automated DOE (Design of Experiments) in Ambr® 250 bioreactors to optimize the production process.
  • Manufacturing Scale-Up & Tech Transfer. Ginkgo can perform pilot-scale fermentation up to 3,000 L. Customers are supported in the development of downstream processing and purification methods. Ginkgo can transfer processes to a manufacturing partner, including for GMP production.

Make the most of this moment for enzymes

A key theme of the Enzyme Services portion of the event was the flexibility of Ginkgo’s offering. As a horizontal platform, Ginkgo supports customers through the entire enzyme R&D process from discovery to development and deployment. This versatility is essential to serve the diverse needs of customers across a range of enzyme-powered industries including: animal feed, biocatalysis, diagnostics, green chemistry, metabolic engineering, mRNA manufacturing, waste remediation, and more!

A recording of the Enzyme Intelligence Virtual Event is available here. Ready to engage Ginkgo’s Foundry for your project? Have questions? Contact [email protected]

What will you grow with Ginkgo?

Launching Ginkgo Enzyme Services

Enzyme Services to Enable Applications across Pharmaceuticals and Diagnostics, Food and Agriculture, and Beyond

Today we are very pleased to announce the launch of Ginkgo Enzyme Services. Ginkgo Enzyme Services is powered by ultra high throughput screening and machine learning-guided protein design, as well as optimized proprietary bacterial and fungal host strains. Ginkgo Enzyme Services solves challenges for R&D teams developing enzymes, from discovery of novel enzyme activity through optimization of enzyme function and large scale manufacturing.

A virtual event on Dec. 15 will give an overview of Ginkgo’s Enzyme Intelligence approach to machine learning-guided enzyme engineering

Enzymes are valuable biocatalysts used across a wide range of industries including in the production of medicines, food, materials, and beyond. Our end-to-end Enzyme Services support R&D leaders looking to identify new enzyme activity to replace existing chemical synthesis steps, improve enzyme specificity, activity, and stability in industrially relevant conditions, and optimize the manufacturing of enzymes for reduced cost of goods and environmental impact.

We’ve supported enzyme R&D programs across a wide range of industries, including biopharma manufacturing and discovery. Notable enzyme services projects include breakthrough work with Aldevron to improve the manufacturing efficiency of vaccinia capping enzyme, a critical reagent used in the production of mRNA vaccines, and a recently announced partnership with Merck to develop biocatalysts for active pharmaceutical ingredient (API) manufacturing.

Our suite of services covers the full end-to-end process for enzyme R&D, providing synergies between enzyme sequence, host strain, and manufacturing processes that can enable commercial success.

Ginkgo Enzyme Services includes:

  • Novel Enzyme Discovery
  • Enzyme Function & Stability Optimization
  • Access to Optimized Host Strains for Robust Expression
  • Optimized Fermentation Process Development
  • Manufacturing Scale-Up, Process Development & Tech Transfer

“Most R&D teams working on developing enzymes expect to need to stitch together a bunch of different services and tools, both in-house and external to make their enzymes work,” said Jake Janey, PhD, a pioneer in the field of biocatalysis. “The ability for Ginkgo to guide the process all the way, providing many intermediate touchpoints with data and prototypes for development and decision making, is a great value-add.”

At Ginkgo, we are constantly working to improve our platform to provide best-in-class services to enable our customers to meet their R&D challenges head on. As a horizontal platform, we have the flexibility, breadth, and scale to serve customers across biocatalysis, diagnostics, and beyond with the full spectrum of tools they need to discover, develop, and deploy enzymes for their processes and products.

With world class expression hosts, automation, computational design, and fermentation capabilities, we are excited to partner with companies across all industries to bring their enzyme-dependent products from conception to market more swiftly and reliably than ever before.

Virtual event details:

Join us for Enzyme Intelligence, a virtual event featuring Ginkgo’s head of protein engineering, Emily Wrenbeck, on December 15, 2022. Sign up here.

Learn more about Ginkgo Enzyme Services at our webpage, or write to us at [email protected].

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?

Celebrating Cronos Group’s First-of-a-Kind CBC Product

Cronos Unveils its New CBC Product, the Spinach FEELZ™ Day Trip Gummies with THC+CBC, Developed on the Ginkgo Platform

We’re so excited to congratulate our customer Cronos – an innovative global cannabinoid company – for launching a CBC-focused product, the Spinach FEELZ™ THC+CBC Day Trip Mango Lime gummies, utilizing our platform for organism design and development.

The Spinach FEELZ™ Day Trip gummies are the first CBC gummy product in Canada and the first of its kind to feature a 3:1 ratio of CBC to THC. The product is currently available in Alberta and British Columbia and will be rolled out to additional provinces over the coming weeks:

  • SPINACH FEELZ™ THC+CBC DAY TRIP GUMMIES: Grab your bag, your friends and get going! A new day’s adventure awaits with Spinach FEELZ™ Day Trip gummies. From sun-up to sun-down, feel at ease and in tune with all the scents, sights, and sounds this glorious world has to offer. These one-of-a-kind THC+CBC gummies are packed with delicious mango-lime flavors and are sure to make for good times with friends. Five sour-then-sweet gummies with 10mg of THC and 30mg of CBC per pack.

What will you grow with Ginkgo?

Optimizing Production of Biobased Speciality Chemicals with Lygos

Strain development program aims to accelerate efforts to create sustainable chemicals

Today we’re pleased to announce our multi-product research and development collaboration with Lygos. This partnership is designed to optimize and scale production of sustainable specialty ingredients that can replace toxic petrochemistry, reclaim local manufacturing, and advance industrial bio-innovation.

Together, we plan to advance two research and development programs over the course of approximately two years. Lygos’ organic acid targets are used to produce biodegradable formulations and polymer-based products used in consumer, agricultural and industrial markets. We at Ginkgo will leverage our extensive expertise in strain development and metabolic engineering as we work to rapidly design and optimize microorganisms that can convert low-cost sugar to high-value chemicals. This in turn can provide a more sustainable alternative to the traditional industrial chemicals that are made from petroleum-derived feedstock.

Creating sustainable biomanufacturing solutions

Many specialty organic acids rely on environmentally damaging and costly production processes. We’re excited to be working with Lygos to replace some of those harmful production methods with sustainable, environmentally friendly biomanufacturing processes. Ginkgo is committed to creating solutions that are better for the planet, and this partnership with Lygos will help advance our initiatives around climate sustainability while supporting domestic manufacturing and technology development.

“Lygos and Ginkgo have been at the forefront of this field, enabling customers to create sustainable products that can help solve the world’s environmental challenges and improve everyday products,” said Eric Steen, PhD, CEO at Lygos.  “The new partnership will enable us to augment our development timelines, allocate more research and development, and accelerate our product commercialization programs.”

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?

High Throughput Screening for Designing Novel CAR-T Cell Therapies

Pooled screening platform for discovering the next generation of CARs

Image of a poster containing CAR-T data

Ginkgo is proud to present a poster this Friday, November 11 at the 37th Annual Meeting of the Society for Immunotherapy of Cancer (SITC). The poster highlights our Foundry-enabled methods for large-scale, combinatorial library design and screening of chimeric antigen receptor (CAR) domains for improved persistence. The ability to screen hundreds of thousands of CAR designs in primary human T cells can enable discovery of variants with desired characteristics. This capability has the potential to discover CAR-T therapies that are effective against solid tumors.

CAR-T cell therapies show tremendous promise for the treatment of cancer. But so far, their use has been limited to targeting blood cancers, as CAR-T has failed to show consistent efficacy in treating solid tumors, which represent approximately 90% of adult human cancers. Part of the challenge when applying CAR-T therapies to solid tumors lies in T cell exhaustion, a state of dysfunction arising from excessive antigen stimulation in the immunosuppressive environment of a solid tumor.

Therapeutic outcomes of CAR-T cell therapies—including CAR-T persistence—correspond to T cell behaviors driven by signaling cascades that are triggered by the intracellular domains (ICD) of CARs. Until now, technical constraints in high throughput screening have made the systematic design and testing of novel ICD combinations that drive more favorable T cell phenotypes onerous. New data we are presenting at SITC will demonstrate that our high throughput screening method enables massively parallel testing of CAR designs and has led to the discovery of new ICD combinations that outperform the canonical CD28-CD3z and 4-1BB-CD3z combinations.

Discovering next generation CAR-T cell therapies

Our platform for cell programming enables synthesis and screening of diverse libraries of genetic constructs to explore biological space. Applying these capabilities to the design of CARs enables screening of hundreds of thousands of possible combinatorial variants of different CAR ICDs. The data we will present at SITC will show how this method could be used to screen for variants with increased persistence in a serial tumor rechallenge assay. As an enabling platform company, we can leverage our full stack of mammalian cell engineering expertise and capabilities to enable the high throughput screening of CAR-T cells to discover and optimize next generation therapeutic candidates for our partners.

While innovation in CAR-T cell therapies continues to grow at a dramatic pace, CAR-T is still a relatively new modality whose potential is just beginning to be fully explored. With large scale screening and automation, we have created a tool we believe can dramatically expand the variety and functionality of CAR domains so that our partners can build therapies targeted for particular tumor environments.

“We’ve only seen a small sliver of what revolutionary modalities like CAR-T can achieve in terms of patient outcomes. Being able to explore broader design space for this powerful technology can help unlock new potential in solid tumor treatment, inflammatory and autoimmune diseases, and beyond.” said Arie Belldegrun, Executive Chairman and Co-Founder of Allogene Therapeutics and Kite Therapeutics and member of the Board of Directors for Ginkgo Bioworks. “The scale of Ginkgo’s platform helps to enable discovery and innovation in this important arena.”

You can view our poster at SITC. To register, visit www.sitcancer.org/2022.

Presentation details:

Date & Time: Friday, November 11, 2022 at 9 am – 8:30 pm, EST
Title: Pooled screening platform for discovering the next generation Chimeric Antigen Receptors
Presenting Author: Taeyoon Kyung, PhD, Senior Mammalian Engineer, Ginkgo Bioworks
Poster Number: 242

Click here to speak with our team and learn more about leveraging our platform.

Find the full press release here along with all of the latest news from the Ginkgo team.

What will you grow with Ginkgo?